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In recent years there has been significant interest in the emission spectra from high-density plasmas, as
manifested by a number of experiments. At these high densities short range �small impact parameter� interac-
tions become important and these cannot be adequately handled by the standard theory, whose predictions
depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the
validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated
ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been
realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration
effect has now been included analytically into the standard theory. It turns out that the integrations may be done
in closed form in terms of the modified Bessel functions K0 and K1. This work develops the new theory and
applies it to experimental measurements.
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I. INTRODUCTION

The modern theory of spectral line broadening �1� started
with the standard separation of the broadening contributions
by electrons and ions. Electrons are treated in the impact
theory. This employs a second order perturbative treatment
to the self-energy and a classical path trajectory to describe
their motion. For the ionic contribution the quasistatic ap-
proximation was used. For both electrons and ions the
emitter-perturber interaction is taken to be dipole only. This
treatment is referred to as “Standard Theory”�ST� and is still
used, despite problems �2�, for which we now have quite
good solutions. The role of ion dynamics is by now well
understood so we will concentrate on electronic broadening
in the impact approximation in this work. Although the field
is moving forward �3,4�, some fundamental problems, dis-
cussed below, remain.

The main problem with the standard electron treatment
has always been the so-called strong collisions, i.e., short
impact parameter collisions for which �a� perturbation theory
was not valid and only unitarity-based error bounds could be
computed, �b� the long range dipole/quadrupole approxima-
tion used for the interaction was questionable due to penetra-
tion by the perturbing electrons into the atomic wave-
function extent, and �c� the classical picture of point
perturbers moving along predetermined classical trajectories
with fixed velocities was in doubt. ST calculations are reli-
able to the extent that the error bound or estimate associated
with the cutoffs due to the “strong” collisions is small com-
pared to the contribution of the remainder of the phase space.
We say error bounds because the contribution of strong col-
lisions may not be computed within ST and only unitarity-
based error bounds may be given. Note that these error
bounds are not small for high densities. The cutoffs referred
to mainly translate to a minimum impact parameter �min�v�
such that the standard treatment is valid for ���min�v� �and
not valid for smaller ��. In the last few years it was realized
�5,6� that first, penetration may be more important than

thought because the standard cutoff n2a0 /Z representing the
wave-function extent is too optimistic �7�, at least for non-
hydrogenic ions. Second, penetration softens the interaction
so that perturbation theory is actually quite valid, even for
collisions previously thought “strong.” However, this would
have to be a new perturbative impact theory that properly
accounts for penetration. The object of this work is to de-
velop the ST with proper account for penetration. We will
refer to this version of the ST as penetrating standard theory
�PST�.

II. BRIEF THEORETICAL REVIEW

The ST expression for the self-energy �collision operator�
� is

����������� = �
��

r��� · r����������,������

+ �
��

r���� · r����������,�����

− r��� · r����i�����,����� , �1�

where � ,�� are upper level states and �� is a state perturbing
the upper level states. By this we mean that a collision with
a plasma electron has a nonnegligible probability amplitude
to cause a transition �→��. Similarly � ,�� are lower level
states and �� perturbs them. Here we deal with hydrogen
only, so we employ the no-quenching approximation, i.e.,
� ,�� ,�� have the upper level principal quantum number and
� ,�� ,�� have the lower level principal quantum number. �
is essentially the velocity integrated a+ ib function of ST
�though in the present work the shift is identically 0 in ST,
which factorizes the density matrix �8,9��. Because penetra-
tion only affects the radial integrals, the exact generalization
of the ST expressions to account for penetration are given in
�5� in terms of the correction factors C	 �which are 1 in ST�,
which effectively modify the electric fields:
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C	�R;n,l,n�,l�� =

	
0

R

Pnl�r�Pn�l��r�r	dr

	
0




Pnl�r�Pn�l��r�r	dr

+ R2	+1

	
R




drPnl�r�Pn�l��r�r−�	+1�

	
0




Pnl�r�Pn�l��r�r	dr

�2�

with Pnl denoting the radial wave function with principal
quantum number n and orbital quantum number l , R�t� the
position of the perturber at time t, and 	 the multipole order
�1=dipole, 2=quadrupole�. Note that C	 is real and symmet-
ric in the states involved. In analogy to the ST we only
consider the dipole �	=1� contribution here. We note that
this is still the most important contribution to broadening
even in the presence of penetration. We thus deal with
C1 exclusively from now on. The “direct” PST � is then
computed as

�PST��1,�2� = −
2�e2n

3q2 	
0




vf�v�dv	 �d�	
−





dt1ei�1t1

�	
−


t1

dt2ei�2t2C1„R�t1�;n�,l�,n��,l��…

�C1„R�t2�;n��,l��,n��,l��…E�t1� · E�t2� �3�

and similarly for the lower level direct term. Of course in the
hydrogen case �1=�2=0 and n�=n��=n��. For the interfer-
ence term we have

�i
PST��1,�2� = −

2�e2n

3q2 	
0




vf�v�dv	 �d�	
−





dt1ei�1t1

�	
−





dt2ei�2t2C1„R�t1�;n�,l�,n��,l��…

�C1„R�t2�;n�,l�,n��,l��…E�t1� · E�t2� . �4�

With regard to the limits of the � integration, the
upper limit �max is taken to be of the order of the Debye
length 	D �0.68	D to account for the shielded Debye fields
instead of the pure Coulomb fields used in ST�, unless this is
comparable to the interparticle spacing. The important
point is that �max is velocity-independent, as the ST does not
deal with effects associated with the wake of a very fast
perturber. The lower limit cannot be 0 in ST because pertur-
bation theory breaks down, because the long range dipole
approximation breaks down, and finally because the de Bro-
glie wavelength of the perturber must be smaller than �min.
For the moment �we will be more precise later in this work�
we note that in PST, only the last consideration is always
important, as perturbation theory is always valid for �=0
and often valid down to �=0. In that case and in accord with
standard practice we take in the present work the limits of
the � integration to be �0,0.68	D�. The important point is
that �max is the same as the �max used in the ST. Similarly, the

lower limit in the velocity integration should not be 0, but a
velocity at which point the de Broglie wavelength becomes
comparable to �max. This complication is also ignored in the
present work. Then the velocity integration gives a factor
�v−1�=
2m /�kT.

The new � functions are emitter and line-dependent.
In general there are four types of expressions with this
general starting formula, depending on whether the imagi-
nary exponentials may be replaced by unity �as for hydrogen
and hydrogenlike lines in the no-quenching approximation�
or not and on whether E�t� corresponds to a straight
line �neutrals� or hyperbolic �ions� trajectory. However, it
does not appear to be possible to develop these expressions
analytically for other cases except hydrogen, so in the
other cases a fully numerical approach �5� might be prefer-
able. For hydrogen we note that on the one hand quantal
methods may have some difficulties and on the other hand,
for semiclassical methods, backreaction and thresholds are
not an issue.

III. APPLICATION TO HYDROGEN

For hydrogen we have two simplifications: First we drop
the imaginary exponentials: If this is not valid, then the prob-
lem reduces to the second case �nonhydrogenic neutrals�.
This implies that � is purely real. Second, we choose explic-
itly a straight line trajectory:

R�t� = � + vt . �5�

For the remainder of this work, we keep the notation of the
previous section using n ,n� ,…, although all these are the
same here. The result is that

�PST��1,�2� = −
�e4n

3�4�0q�2	
0




vf�v�dv	 �d�

� I��,v;n�,l�,n��,l���I��,v;n��,l��,n��,l��� ,

�6�

I��,v;n,l,n�,l�� = �	
−





dt
C1„��2 + v2t2�1/2;n,l,n�,l�…

��2 + v2t2�3/2 .

�7�

The ST result is then simply �C1=1� : IST= 2
�v . For hydrogen

the wave functions are known analytically in terms of the
Laguerre polynomials L:

Pnl =
A

a
e−z/2zl+1Ln+l

2l+1�z� , �8�

with z=ar , a= 2
na0

, A=−
a3��n− l−1� ! /2n��n+ l� ! �3�, and
hence C	 may be computed analytically.

C	 = 1 − e−aR�t�pn+n�+	„aR�t�… �9�

where pk�x�=�i=0
k six

i is a polynomial of degree k. The coef-
ficients si are computed in the Appendix and are rapidly de-
creasing functions of i.

Note that s0=s1=1 and s2=0.5. I therefore has the form
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I =
2

�v
�1 − ��b��, ��b� = �

i=0

n+n�+	

sib
iFi−2�b� �10�

with

Fq�b� = 	
0




due−b cosh u�cosh u�q, �11�

where si are the coefficients of the polynomial p
defined above. All corrections due to penetration are
contained in the �-dependent function ��b�. For scaling
the only relevant variable is b=a�. Thus, as long as the
minimum impact parameter is velocity-independent �zero,
as discussed above�, the velocity integration may be done
separately.

To proceed further, we note the following values for the
function Fq�b� ,q=−2,… ,n+n�+	−2:

F−2�b� = Ki2�b�,F−1�b� = Ki1�b� ,

F0�b� = K0�b�,F1�b� = K1�b� , �12�

where K� are modified Bessel functions and Kiq are their
integrals:

Ki0�b� = K0�b�, Kiq�b� = 	
b




Kiq−1�x�dx �13�

as well as the recursion relation:

Fq+2�b� = Fq�b� +
�q + 1�Fq+1�b� − qFq−1�b�

b
. �14�

The recursion relation may be obtained as follows:

Fq+2 = Fq + 	
0




due−b cosh ucoshq u sinh2 u

= Fq + 	
0




d e−b cosh u

b
�coshq u sinh u

= Fq +
1

b
	

0




e−b cosh ud�coshq u sinh u� �15�

since the surface terms vanish because of the sinh u at b=0.
The last integral is

b−1	 e−b cosh u�q coshq−1u sinh2 u + coshq+1 u�

= b−1	 e−b cosh u�q coshq−1 u�cosh2 u − 1� + coshq+1 u�

= b−1��q + 1�Fq+1�b� − qFq−1�b�� . �16�

For the numerical implementation we defined
Hp�b�=bpFp�b� in terms of

H0�b� = K0�b� ,

H1�b� = bK1�b� ,

H2�b� = bK1�b� + b2K0�b� ,

H3�b� = b2K0�b� + �2b + b3�K1�b� ,

H4�b� = �3b2 + b4�K0�b� + �6b + 2b3�K1�b� ,

H5�b� = �12b2 + 2b4�K0�b� + �24b + 7b3 + b5�K1�b� ,

]

Hq�b� = �
k=0

q

bk�h0�q,k�K0�b� + h1�q,k�K1�b�� . �17�

Note that the numerical coefficients of the powers of b are
line-independent. These numerical coefficients h0 and h1 are
given analytically by the recursion relation:

hj�q + 2,k� = �q + 1�hj�q + 1,k� + ��k − 2��hj�q,k − 2�

− qhj�q − 1,k − 2��, j = 0,1 �18�

and it is understood that hj�q ,k�=0 for k�0 or k�q.
It is clear that h0�q ,k�=0 for odd k and h1�q ,k�=0 for

even k. Special cases are h0�q ,0�=�q0 ,h0�q ,2�=
�q−1�!

2 for
q�2,h1�q ,1�= �q−1�! for q�0. Using s0=1 and the
relation �10�

Ki2�z� = z�K1�z� − Ki1�z�� �19�

we have

1 − ��b� = �1 − bK1�b�� − b�s1 − 1�Ki1�b�

− b2 �
i=2

n+n�+	

siHi−2�b� . �20�

Although one can get highly accurate analytic approxima-
tions for Ki1�b� by using the series and asymptotic expan-
sions in �10�, in fact this term may be dropped because as we
mentioned s1=1. In Fig. 1 we plot the first term as a function
of b �dotted lines�, as well as the full 1−��b� term for vari-

FIG. 1. Plots of 1−��b� for different principal quantum num-
bers n and channel �l− l�� :n=3, l=0, l�=1 �solid�, n=3, l=1, l�=2
�dash-dotted�, n=5, l=0, l�=1 �dash-double dotted�, n=9, l=0, l�
=1 �dashed�, and n=9, l=7, l�=8 �dot-double dashed�. Also shown
is 1−bK1�b� �dotted�.
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ous n and channels �l , l��. This first term vanishes at b=0 and
the ST result is recovered for b�5 if we were to drop all
other terms; however, the other terms ensure that the ST
result is actually recovered only at substantially higher b.

Both 1−��b� and
1−��b�

b vanish for b→0��→0�. There is
therefore no divergence at small impact parameters in PST.
The graphs in Fig. 1 may be used to provide accurate values
for the “relevant wave-function extent” cutoff used in ST. Of
special interest is the case where the shielding length �typi-
cally the Debye length� is smaller than the wave-function
extent.

Finally all terms involving Fi−2 , i�1 vanish for b=0 be-
cause of bi. They may be written

b2 �
i=2

n+n�+	

siHi−2�b� = K0�b��
i=1

n

v2ib
2i + K1�b��

i=1

n

v2i+1b2i+1,

�21�

where v j are �line-dependent, because they involve the si�
numerical coefficients and we substituted n=n� ,	=1. The
series breaks up into two series, one involving K0 and even
powers of b and the other K1 and odd powers of b. For large
impact parameters K1 and K0 have an exponential decay
and the ST result is recovered. The coefficients are given
explicitly by

v j = �
k=j

n+n�+	

skh�k − 2, j − 2� �22�

with h being h0 for even and h1 for odd j=2,… ,n+n�+	. In
particular, v2=s2=0.5. Evidently, v2 is also a line-
independent term.

IV. IMPACT PARAMETER INTEGRATION

In the PST the expression for the final collision operator is
reduced to one-dimensional quadratures:

�PST = −
4�e4n

3�4�0q�2
 2m

�kT
	

0

bmax db

b

��1 − ��b;n�,l�,n�,l�����1 − ��b;n�,l��,n�,l����

�23�

for the noninterference terms, where � refers to states of the
upper or lower levels and bmax refers to a�max, with a corre-
sponding to the upper or lower level, respectively. For the
interference terms, we have

�i
PST = −

8�e4n

3�4�0q�2
 2m

�kT
	

0

bmax db

b

��1 − ��b;n�,l�,n��,l����

��1 − �n�b

n�

;n�,l��,n�,l���� , �24�

where � refers to states of the upper and � to the states
of the lower levels. �Note that b is scaled for the lower level.�

Here bmax corresponds to the upper level’s bmax. The inter-
ference integral is a two-parameter function, with arguments
bmax ,

n�

n�
. These integrals are numerically easy to compute

and tables may be given for any line. In view of the speed
of modern computers, such tables appear unnecessary.
Using the analytic form of ��b� we identify the dominant
contribution:

G1�bmax� = 	
0

bmax db

b
�1 − bK1�b��2, �25�

where bmax=a�max. Figure 2 shows G1�b� �solid line�. Note
that this term dominates for large b. Also shown in Fig. 2 are
ln�b� �dashed� and ln�b�−G1�b� �dash-dotted�. It is interest-
ing to note that concerning the ST result ln�bmax /bmin�, and
the much discussed “exact” value of the strong collision con-
stant, this difference may be taken as the log of “the” effec-
tive minimum impact parameter multiplied by a, provided of
course we can neglect the other terms, which remain bound
and hence contribute solely to the constant added to the loga-
rithm �neglecting other sources of strong collisions, namely
unitarity issues�.

V. THE PST MINIMUM IMPACT PARAMETER

To summarize our theory: PST is convergent for all
line components. However, being convergent does not
make it necessarily right and we must address issues related
to the validity of perturbation theory. It is interesting to
note that in PST we also need a minimum impact parameter,
but for a completely different reason: In PST for high enough
velocities we can always integrate down to zero impact
parameters. Unitarity of the perturbative second-order
expressions is only violated for slow collisions. It is not
violated for fast collisions, no matter what the impact param-
eter. In addition, at low velocities, unitarity is still satisfied
for small enough impact parameters because of penetration.
This means that the minimum impact parameter of ST,
�min�v�, is not that simple anymore, as Fig. 3 illustrates for
the maximum of the diagonal elements for the H� line of the
quantity expanded via a second-order perturbation theory,

FIG. 2. The G1 function.
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i.e., �I−Sa�� ,v�Sb
†�� ,v�� versus impact parameter �in atomic

units�. Here S denotes the S-matrix, and the subscripts a
and b correspond to the upper and lower levels, respectively.
This quantity is plotted for two different velocities: The
dotted �PST� and dash-dotted �ST� graphs correspond to a
very low velocity, 1.48 times the average velocity, �v� of a
very cold plasma �T=1.76 eV�. We see that unitarity is sat-
isfied �in the sense I−Sa�� ,v�Sb

†�� ,v��1� for ��3 and �
�17 for PST. For the higher velocity case, namely v
=2.175�v�, but with �v� corresponding to an electron
temperature of 8.34 eV, we see that in PST �dashed� unitarity
is practically always satisfied for all impact parameters,
whereas it breaks down for ��11 for ST �solid�. The
conclusion is that defining a velocity-dependent minimum
impact parameter �min�v�, as in ST, is not possible. Figure 4
shows the minimum impact parameter versus velocity for
the H� line for ST �solid� and PST �dashed�. The phase
space region to the left of these curves corresponds to strong
�more appropriately called “slow”� collisions. The main ad-
vantage of PST is the reduction of the strong collision phase
space for large velocities. How important this will be de-
pends on the importance of this region for the parameters of
any particular experiment. This region could not be accu-
rately estimated by ST due to penetration effects. Further-

more, ST usually completely dropped the contribution of this
region to the interference terms, while PST also includes this
contribution.

We mentioned that defining a velocity-dependent
minimum impact parameter �min�v� is not simple in PST
because to a given v, there corresponds in general 0,1, or 2
values of �min�v�. On the other hand, it is simpler and
advantageous to instead define a minimum impact-
parameter-dependent velocity vmin��� such that unitarity
is satisfied for v�vmin���. The advantages of this approach,
which is equivalent to the standard definition of a velocity-
dependent minimum impact parameter, is not only
computational, but also helps to remind us that only slow
collisions may be strong. This means that �PST is now
given by

�PST = −
4�e4n

3�4�0q�2	
0

bmax db

b
	

vmin


 f�v�
v

dv

��1 − ��b;n�,l�,n��,l����
2

= −
4�e4n

3�4�0q�2	
0

bmax db

b
e−mvmin

2 �b�/2kT

��1 − ��b;n�,l�,n��,l����
2, �26�

with bmax=2�max /n�a0, and similar terms for the lower level.
The strong collision term �more precisely termed “slow col-
lision term” in PST� is

2�n	
0

�max

�d�	
0

vmin���

vf�v�dv

= 2
8�kT

m
n	

0

�max

�d�	
0

mvmin
2 ���/2kT

xe−xdx

= 2
8�kT

m
n	

0

�max

�d�„1 − e−X����1 + X����… �27�

with X���=mvmin
2 ��� /2kT corresponding to the assumption

�I−S�S�
†�=1, which is now reasonable, as this quantity oscil-

FIG. 5. Variation of 1−��b� with channel �l− l�� for n=3. In this
case we only have two channels �l=0− l�=1, l=1− l�=2� and only
one ratio R�.

FIG. 3. Maximum diagonal matrix element of �I -SaSSb
†�.

FIG. 4. Plots of �min�v�.
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lates around unity when unitarity breaks down and we effec-
tively use its average for the region where perturbation
theory is not valid.

There remains to determine vmin���. This determination,
as in the ST determination of �min�v�, amounts to solving

 4e2

4�0qa0v
�2� r���

2

n�
2 1 − ��b;n�,l�,n��,l���

b
�2

+
r���

2

n�
2 1 − ��b�;n�,l�,n��,l���

b�
�2

− 2
r��� · r���

n�n�
1 − ��b;n�,l�,n��,l���

b
�

�1 − ��b�;n�,l�,n��,l���

b�
�� = 1. �28�

Although this may be done separately for each matrix
element �11�, yielding a different vmin for each matrix ele-
ment, we wish to keep the discussion on the same level as
ST, which does not employ matrix element-dependent cut-

offs. Hence to be able to compare it to vmin
ST ���=

q�na
2−nb

2�

m� , we
determine vmin��� as

vmin
PST��� =

2q

ma0
�naZ 2�

naa0
� − nbZ 2�

nba0
�� �29�

with

Z�b� =
1

n − 1�
l=0

n−2
1 − ��b;n,l,l + 1�

b
, �30�

which represents an average value for
1−��b�

b . In Fig. 5 and 6

we plot the quantity R�=
1−��b;n,l,l��

1−��b;n,l=0,l�=1� for n=3 and n=9 in

order to illustrate the variation in 1−��b� with channel
�l− l��. As mentioned above, this is only relevant if one
wishes to use a vmin that is the same for each matrix element.

We note that vmin��� is line-dependent, but does not de-
pend on the plasma parameters �these determine how impor-
tant this cutoff is in the weak-strong collision separation, i.e.,
the relative importance of the different regions of this graph�.
Therefore it may be given explicitly in closed form, thus
further speeding up calculations �even though its computa-
tion is quite fast�.

We must note here that for high-density plasmas, where
the “strong”—or better, slow—collision term is important,
the details of the cutoff vmin��� are important. However, this
is no different from the ST case and is not discussed any
further here.

VI. COMPARISON WITH EXPERIMENT

Part of the problem with high density ��1018 e /cm3� hy-
drogen experiments is the lack of data that may be consid-
ered “benchmark.” Even more problematic is the lack of
well-diagnosed data in yet higher density ��1020 e /cm3�,
where penetration effects could be even more dramatic. In
Table I we compare ST and PST calculations with high den-
sity hydrogen experiments �12,13�, discussed in detail in
�14,15�. These calculations only include dipole terms and

FIG. 6. Variation of 1−��b� with channel for n=9.

TABLE I. H� Böddecker et al. �12� and Büscher et al. �13� data.

n�1018 e /cm3� T�eV� Expt. ST ST-weak PST PST-weak

2.44 7 153±21 75.3 55.25 61.5 60.2

3.44 7.6 182±24 100.16 70.84 79 77.55

4.84 8.4 187±36 133.5 90.3 101 99.2

7.08 9.2 228±64 184 118.5 132.96 130.8

9.27 10 245±54 231.16 143.2 160.9 158.5

0.49 5.77 40.3±4.3 20.35 16.5 17.88 17.56

0.53 10.46 45.4±3.8 21.22 15.75 16.5 16.4

0.68 6.39 47.4±6.5 26.5 21 22.74 22.36

0.99 7.12 53.1±6.5 36 27.67 30 29.52

1.35 7.82 67.8±2.5 46.42 34.7 37.6 37.1

1.96 8.4 81.9±5.6 63.2 45.72 49.8 49.1

2.54 8.34 96.2± 9.5 78.32 55.76 61.18 60.22
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do not include any estimates of either quadrupole or inelastic
contributions because we wish to avoid possible distortion
of the comparisons due to differences in ST calculations
and estimates. We show the ST and PST widths �full width
at half maxium� in Å as well as the corresponding widths
�ST-weak and PST-weak� with “weak” collisions only, i.e.,
with no strong collision term �equivalently �I−SaSb

*�=0
for strong collisions�. Notes that PST gives a larger width
for the “weak” collision contribution, but a much smaller
strong collision term. This increases the relative proportion
of the part of phase space that is reliably computed �“weak”
collisions� compared to those estimated �strong collision
term�.

To understand the significant differences between the
PST and ST calculations, it is instructive to look at the
�I−SaSb

*� graphs of Fig. 7: Figure 1 shows that penetration is
an issue for b�10, i.e., ��15a0 for the upper level. For the
plasma parameters in question the shielding length is about
100a0. Figure 7 shows the maximum �I−SaSb

*� matrix
element as a function of impact parameter � for different
velocities: v=0.56�v� �solid for PST and dotted for ST�,
v=1.08�v� �dashed for PST and dash-dotted for ST� and
v=1.5�v� �dash-double-dotted for PST and dot-double-
dashed for ST�. As expected, we see significant differences
between PST and ST for ��15a0. However, we see that, for
instance, for v� �v�, the contribution of ��15a0 to a
strong collision term based on �I−SaSb

*�=1 is overestimated
in ST by at least a factor of 2. This means that whereas
in this region ST has a problem with unitarity, in reality there
is no such problem when penetration is accounted for, as in
PST. In fact the region v�0.7�v�, for which unitarity is sat-
isfied in PST, provides 82% of the width.

There remains to establish the importance of the
��15a0 regime to the final ST width. As seen from
the table, the strong collision term accounts for a substantial
part of the total ST width, and only a very small part of
the total PST width. This illustrates the importance of
accounting for penetration in dense plasmas. With regard
to the experimental results we note �14� important ion
dynamical effects, especially for the lower densities,

not included in the calculations shown here, as well
as experimental problems �15�. Further issues related to
dense plasma hydrogen broadening are discussed in
�11,16,17�.

VII. COMMENTS

In the Introduction we briefly commented on the
so-called strong collisions. At least for hydrogen, it
turns out that whether a collision is strong or not is
basically determined by the velocity. Standard estimates �18�
consider a collision as strong when the impact parameter
is no larger than the Weisskopf radius, which is approxi-

mately
q�n�

2−n�
2�

mv with n� and n� the upper and lower principal
quantum numbers. If this is smaller than the wave-function
extent, usually taken to be of the order of approximately
n�

2a0, penetration is important and the collision is actually
weak.

From Fig. 3 we see that PST’s advantage over ST
arises mostly for temperatures that are not too low, combined
with high densities. We see that the PST and ST differences
are most important for the highest temperature. In
the low temperature case �T=1.76 eV�, both ST and PST
require a strong collision estimate ��I−SaSb

†�=1� for
��17a0 for v=1.48�v�, except for an extremely small
region ��3a0 in PST. As a result, PST is not much
more accurate than ST in that case, unless the shielding
length is comparable to 3a0, i.e., smaller than the wave-
function extent.

One of the long-standing issues in plasma spectroscopy
is line merging and continuum lowering. A number
of models have been presented, with Inglis-Teller �18�
perhaps the best known. In essence �19� a number of
effects occur in line merging: Because nearest neighbors
come close compared to the wave-function extent of
the bound electron, the potential felt by the electron is
modified and eventually that electron can be found at no
cost in energy much further away from its center, closer to
the neighboring center. Eventually such an electron becomes
a free plasma electron, as its wave function becomes
delocalized over many centers. This mechanism is not
different from the solid state picture. However, in hot plas-
mas the most powerful delocalization as well as localization
mechanism is dynamic �19�: Due to collisions the bound
wave function begins to spread and eventually will become
macroscopic, unless it is recaptured. This is also the colli-
sional �impact� picture of Stark broadening, which is at least
a major contributor to the level broadening of levels close to
the limit, and for which penetrating collisions can be impor-
tant. In addition, far infrared and longer wavelength lines,
which have a substantial wave-function extent, are of signifi-
cant interest in astrophysics �20,21�, though typically at low
densities.

APPENDIX: DERIVATION OF THE EXPRESSION FOR
THE CORRECTION FACTOR

In

FIG. 7. Analysis of the PST vs ST differences for the highest
density point of �12�.
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C	�R;n,l,n�,l�� =

	
0

aR

dze−zz	+l+l�+2Ln+l
2l+1�z�Ln�+l�

2l�+1�z�

	
0




dze−zz	+l+l�+2Ln+l
2l+1�z�Ln�+l�

2l�+1�z�
+ �aR�2	+1

	
aR




dze−zz−	+l+l�+1Ln+l
2l+1�z�Ln�+l�

2l�+1�z�

	
0




dze−zz	+l+l�+2Ln+l
2l+1�z�Ln�+l�

2l�+1�z�
�A1�

the L are the Laguerre polynomials:

Ln+l
2l+1�z� = �

k=0

n−l−1

�− 1�k+2l+1 ��n + l� ! �2zk

�n − l − 1 − k� ! �2l + 1 + k� ! k!
.

�A2�

The product of the Laguerre polynomials may then be
written as

Ln+l
2l+1�z�Ln�+l�

2l�+1�z� = �
p=0

n−l+n�−l�−2

apzp �A3�

with

ap = ��n + l� ! �n� + l�� ! �2�− 1�p

��
k=max�0,p+1+l�−n��

min�n−l−1,p�

��n − l − 1 − k� ! �2l + 1 + k� ! k ! �n� − l� − 1

− p + k� ! �2l� + 1 + p − k� ! �p − k� ! �−1. �A4�

Note that because the factor ��n+ l� ! �n�+ l�� ! �2 enters both
the numerator and the denominator in C	, it may be dropped.

Therefore we have integrals of the type

	 dze−zzk = − e−z�
m=0

k
k ! zk−m

�k − m�!
�A5�

and hence analytic expressions for C	:

C	�R;n,l,n�,l�� = I1 + �aR�2	+1I2 �A6�

with

I1 =

�
k=	+l+l�+2

n+n�+	 �ckk ! 1 − e−aR�
r=0

k
�aR�k−r

�k−r�! ��
�

k=	+l+l�+2

n+n�+	

ckk!

�A7�

and

I2 =

�
k=l+l�+1−	

n+n�−	−1

dke
−aRk ! �

r=0

k
�aR�k−r

�k−r�!

�
k=	+l+l�+2

n+n�+	

ckk!

, �A8�

where

cq = aq−	−l−l�−2 �A9�

and

dk = ak+	−1−l−l�, �A10�

so that

C	�R;n,l,n�,l�� = 1 − e−aR

�
k=	+l+l�+2

n+n�+	

ckk ! �
r=0

k
�aR�k−r

�k−r�! − �
k=l+l�+1−	

n+n�−	−1

dkk ! �
r=0

k
�aR�2	+1+k−r

�k−r�!

�
k=	+l+l�+2

n+n�+	

ckk!

. �A11�

In the second sum, setting k→k+2	+1, this may be written as
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C	�R;n,l,n�,l�� = 1 − e−aR

�
k=	+l+l�+2

n+n�+	

ck�k ! �
r=0

k
�aR�k−r

�k−r�! − �k − 2	 − 1� ! �
r=0

k−2	−1
�aR�k−r

�k−r−2	−1�!�
�

k=	+l+l�+2

n+n�+	

ckk!

. �A12�

Clearly we can then write C	=1−e−aRPn+n�+	�aR�, where
Pk�x�=�i=0

k six
i is a polynomial of degree k. The coefficients

si are

si = D−1� �
j=max�i,	+l+l�+2�

n+n�+	
cjj!

i!
− ��i − 2	 − 1�cj

�j − 2	 − 1�!
�i − 2	 − 1�!� ,

�A13�

where we defined

D = �
k=	+l+l�+2

n+n�+	

ckk! �A14�

and ��j�=1, j�0, and 0 otherwise. Note that for i=n+n�
+	 ,si=0 because we have only the term j= i, since i=n
+n�+	� �l+1�+ �l�+1�+	.
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